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Abstract:  The evaluation of water quality is essential for effective water resource manage-
ment. Traditionally, in-situ measurements have been employed to obtain water quality para-
meters, but in recent times researchers have demonstrated that satellite images offer a reliable
tool for estimating water quality parameters. This study focuses on estimating various water
quality parameters viz., chlorophyll-a (Chl-a), turbidity, Total Suspended Matter (TSM), Sec-
chi depth, Coloured Dissolved Organic Matter (CDOM), and cyanobacteria in the Kamuzu
reservoir  of the Lilongwe River for the period 2013-2020 using Sentinel-2 and Landsat 8
satellite imagery. Turbidity and TSM estimates were compared with in-situ data collected dur-
ing the same period. The comparison revealed favourable R2 values of 0.9 and 0.69 for TSM
and turbidity, respectively, using Sentinel-2 images whereas R2 values of 0.56 and 0.61 were
obtained using Landsat 8 images. The study also generated spatial distribution maps of water
quality parameters using both Landsat 8 and Sentinel-2 satellite data which are in good agree-
ment with theoretical expectations for most water quality parameters, except for CDOM and
cyanobacteria indicating limitations in estimating these parameters accurately using band ratio
algorithms.  Nonetheless,  this  research emphasizes the  importance  of  remote  sensing  tech-
niques for estimating water quality parameters, potentially serving as a substitute for in-situ
data in terms of coverage and frequency, which is a common challenge faced in assessing wa-
ter bodies worldwide.
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1 INTRODUCTION

Water  is  a very  critical  resource  that  ensures  economic  and  developmental
growth (Cherif et al., 2019). Water quality is one of the most fundamental aspects of
freshwater resources that are studied when it comes to water being supplied to the
population for  consumption (Potes et  al.,  2018). Water  quality is  the measure of
chemical, physical and biological parameters for the suitability of water for human
and animal  consumption  as  well  as  for  industrial  usage  (Nyasulu,  2012).  Water
quality is assessed through different parameters to understand its effect on human
and  aquatic  life  health  (Stevenson,  1953).  Surface  and  subsurface  water  quality
monitoring is also conducted for a variety of reasons including environmental re-
porting and research. It is measured by several parameters such as dissolved oxygen,
nutrients, turbidity, hardness and phytoplankton etc. (Gholizadeh et al., 2016).

Natural water resources such as rivers and lakes are the major source of water
supply to urban cities. Water pollution, all across the globe, has become one of the
major problems affecting the water quality (Nyasulu, 2012) of these water resources.
Infrastructural development and industrialization are some of the factors leading to
the contamination of water resources  resulting in poor water quality (Phiri et al.,
2005). The key causes of contamination to these natural resources as well as ground-
water resources are the ejection of industrial effluents and domestic sewage, which
comprises  organic  pollutants,  heavy  metals,  chemicals  and  run-off  from  human
activities as well as construction and agriculture (Goldar and Banerjee, 2004). Total
Suspended Solids (TSS) is the measure of total organic and inorganic compounds
suspended in water while Total Dissolved Solids (TDS) is the measure of total inor-
ganic chemicals including salts and organic compounds dissolved in water (Soomets
et al., 2020). Runoff from built environments and effluents leads to an increase in
the TSS and TDS which degrade the quality of water (Khan and Ghouri, 2011). Cul-
tivation along the river banks on the other hand leads to runoff rich in nutrients, due
to the use of pesticides and fertilizers, which contributes to the formation of algal
blooms (Chimwanza et al., 2006) due to the presence of phosphorus and nitrogen in
fertilizers (Pereira et al.,  2018).  Excess quantities of these nutrients lead to a de-
crease in Dissolved Oxygen (DO) leading to the formation of harmful algae blooms
in water bodies.

Water quality is usually calculated through in situ sample collection & measure-
ments  and  laboratory  measurements.  These  methods  have  been  in  use  for  many
years and provide accurate results if proper procedures are followed (Elhag et al.,
2019).  These methods, however,  have their drawbacks.  They are laborious, time-
consuming, have minimal spatial coverage of water bodies due to access and reach,
and the frequency of water sample collection is limited. Sensors have also been de-
ployed in many cases for continuous measurement of water quality parameters but
they have their limitations (Sicard et al., 2015). Compared to in situ measurements,
satellite images provide large spatial extent and temporal variations of water bodies
(Sagan et al., 2020). Depending on the sensor used, satellite images with a short re-
visit time enable water bodies to be monitored frequently (Bande et al., 2018). Satel-
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lite images also help in estimating the water quality of water bodies, not easily ac-
cessible (Peppa et al., 2020). Satellite images from Sentinel and Landsat have been
used by several authors in monitoring water quality in different parts of the world
(Gholizadeh et al., 2016; Bandel et al., 2018; Elhag et al., 2019; Topp et al., 2020;
Chen et al., 2020; Kim et al., 2020; Katlane et al., 2020; Shi et al., 2020; Silva et al.,
2021).

The primary objective of this study is to assess the effectiveness of using satel-
lite images as an alternative approach for estimating water quality in water bodies,
eliminating the need for on-site visits and in-situ water sampling. This methodology
has not been  extensively explored in the region under study, and given that  the
Kamuzu reservoir serves as a vital water source for Malawi, it is crucial to monitor
its water quality regularly. Due to the inconsistent collection of water samples in
previous years, this study can provide valuable insights for authorities to monitor
water quality at regular intervals and implement appropriate measures if necessary.

2 STUDY AREA

Lilongwe River runs through Lilongwe, the capital of Malawi, which is experi-
encing development and a rise in urbanization (Chidya et al., 2016), and a lot of dis-
charge from industrial, domestic, and agricultural activities ends up in this river. The
study was conducted on the Lilongwe River in the Lilongwe district of the central
region of Malawi to understand the change in the water quality of the dam due to an-
thropogenic activities. Lilongwe district lies between 14.50 and 13.50 S latitude and
between 33.50 and 34.50 E longitude (Figure 1). Dzalanyama mountain range bor-
ders the country of Mozambique where the river originates. The river spans a length
of approximately 100 km with a catchment area of about 1800 km2 (Nyasulu, 2012).
There are two dams on the Lilongwe River which are used by the Lilongwe Water
Board (LWB) for supplying water to the city. These are Kamuzu Dam I (14.170 S
and 33.640 E) which was constructed on the Zambezi basin in 1966 and have a ca-
pacity of 4,500,000 m3, and Kamuzu Dam II (14.160 S and 33.680 E) which was
constructed in 1989, just below Kamuzu Dam I, and later rehabilitated in 1992, has
a capacity  of 19,800,000 m3.  Kamuzu Dam I (KD-I)  acts as a balancing reservoir
and its outflow goes directly into Kamuzu Dam II (KD-II). The reservoir,  named
Kamuzu Reservoir (Figure 2) was studied for the present work.

Some authors have studied the water quality of the area (Nyasulu, 2012) and its
relationship with land use and landcover (Nkwanda et al., 2021), but no study has
been conducted to assess the variations in water quality parameters of the reservoir
and estimation of water quality parameters using satellite images. In this study, the
spatial spread of water quality parameters across the reservoir has been derived us-
ing the band ratio algorithm using satellite images and the same has been compared
with the in-situ data.
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Figure 1  Locator Map of Study Area

Figure 2 Kamuzu Reservoir along Lilongwe River, Central Malawi, and the location of the Dams
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3 MATERIALS AND METHODS

In the present study, the satellite data was used to estimate the water quality
parameters which was compared with the in-situ data of the same period. The estim-
ated and in-situ values were further analysed through correlation and regression. The
flow chart  followed in the study is shown in Figure 3 which shows the different
steps followed for the estimation of water  quality using different band ratios for
Landsat and Sentinel-2 data and its correlation with the in-situ data and the distribu-
tion of the water quality parameter in the reservoir. The satellite data (Sentinel-2 and
Landsat 8 images) were downloaded from their respective websites (Copernicus ht-
tps://scihub.copernicus.eu/ for Sentinel-2 and Earth Explorer  https://earthexplorer-
.usgs.gov/ for Landsat 8). Atmospheric correction was applied to the Landsat 8 data,
whereas for the Sentinel-2 data no such correction was applied, as it was already
corrected  for  the  effects  of  atmosphere.  Both  the  data  sets  were  clipped  using
a study-area shapefile to get the image for the study only. Suitable band ratio al -
gorithms (Table 1) were applied to the images to estimate the water quality para-
meter.

Figure 3  Methodology flowchart showing different steps

The estimated  results  of  water  quality  parameters  from the algorithms were
used in a correlation and regression analysis with in-situ data for obtaining the coef-
ficient of determination (R2). For the values obtained from the processed images to
correlate with in situ data, an average pixel value was extracted from a 5×5 pixel
window corresponding to the geographical coordinate of the water sampling point.
This was necessary to avoid any bias in the estimated values, as a single pixel value
may not represent the parameter value correctly.
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Table 1  Band ratios used to retrieve Chl-a, TSM, turbidity, CDOM, SD and cyanobacteria from

satellite images

Sentinel-2 Landsat 8

Band ratio
Water  Quality

Parameter
Reference Band ratio

Water Quality

Parameter
Reference

R704/R664 Chl-a
(Ansper  and

Alikas, 2018)

Rrs(NIR)/

Rrs(Red)
Chl-a

(Gholizadeh,  et

al., 2016)

R782-R740+R832/2 TSM
(Soomets  et  al.,

2020)

Rrs(Red)/

Rrs(Green)
TSM

(Gholizadeh,  et

al., 2016)

R492/R664 turbidity
(Bande  et  al.,

2018)

Rrs(Blue)/

Rrs(Red)
turbidity

(Bande  et  al.,

2018)

R559/R664 CDOM
(Toming  et  al.,

2016)

Rrs(Green)/

Rrs(Red)
CDOM

(Toming  et  al.,

2016)

1.694*KdPAR-0.677 SD
(Soomets  et  al.,

2020)
Kd490 SD

(Zheng  et  al.,

2016)

115530.31*(R559*R

664)/R704
cyanobacteria

(Potes  et  al.,

2018)

For Sentinel-2, R denotes the reflectance and the particular number after R denotes the wavelength. For

Landsat 8, Rrs denotes the reflectance and Blue, Green, Red denotes the bands. K d is the light attenuation

coefficient.

3.1 Sentinel-2 MSI data

Sentinel-2, which was launched in 2015, is a European wide-swath, high-resol-
ution, multi-spectral imaging mission. It comprises 2 twin satellites, Sentinel-2A &
2B having a 5-day revisit frequency time. Sentinel-2 carries an optical instrument
payload that samples 12 spectral bands: four bands at 10 m (Bands 2, 3, 4 and 8), six
bands at 20 m (Bands 5, 6, 7, 8A, 11 and 12) and three bands at 60 m spatial resolu-
tion (Bands 1, 9 and 10). Cloud-free Sentinel-2 Level 1C (L1C) MSI data for the
study area for the study period has been downloaded which comprises 100 sq. km
tiles. A total of 5 cloud-free images (2016-2020) corresponding to the dates of the
field sampling (±5 days) were downloaded and processed.

3.2 Landsat 8 data

Landsat 8 is an American Earth Observation Satellite which was launched in
2013 and carries two sensors: the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS). OLI collects data in eight spectral bands (Bands 1-7 and 9)
with a spatial resolution of 30 m. Band 8 collects the data with a spatial resolution of
15 m in a panchromatic band. TIRS measures thermal data at 100 m spatial resolu-
tion using two bands 10 and 11. Cloud-free Landsat  8 images were downloaded
from the United States Geological Survey (USGS). These images were downloaded
to match the dates of Lilongwe Water Board field sampling data (±5 days). A total
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number of  7  cloud-free  (2013-2020) images corresponding  to the field sampling
dates were downloaded and processed.

3.3  Estimation  of  water  quality  parameters  using  satellite
data

Kutser et al. (2016) used the vegetation red edge and NIR in Sentinel-2 to es-
timate Total Suspended Matter (TSM) and obtained positive results. Gholizadeh et
al. (2016) studied many possibilities of band math in Landsat 8 to estimate Chl-a,
Secchi depth, Coloured Dissolved Organic Matter (CDOM), Total Suspended Mat-
ter (TSM), and turbidity. Potes et al. (2018) used the green and coastal aerosol bands
and the green, blue and red bands in Sentinel-2 to map turbidity and cyanobacteria
respectively in a reservoir.  They concluded that Sentinel-2 had a high potential to
monitor  turbidity  and  cyanobacteria.  Bresciani  et  al.  (2019)  used Sentinel-2 and
Landsat 8 to estimate chlorophyll-a, turbidity, and Secchi depth in two reservoirs.
They used the Modular Inversion and Processing System to retrieve these paramet-
ers. Bande et al. (2018) compared Sentinel-2 and Landsat 8 to generate the effective-
ness of one satellite over the other. They estimated the concentration of chlorophyll-
a using the coastal aerosol, blue, green and red bands while the blue and red bands
were used to estimate turbidity. The results showed that Sentinel-2 had an edge over
Landsat 8 data because of its better resolution. Soomets et al. (2020) estimated TSM,
Chl-a, Secchi depth, and CDOM from Sentinel-2 data using several band ratio al-
gorithms. They obtained good results after comparison with in-situ data. The various
band ratios used for the calculation of the water quality parameters, in the present
study are listed in Table 1. These ratios are based on the above studies.

Since the in-situ data were collected between the period of 2013 to 2020, Sen-
tinel-2 satellite data could not be used for the entire study as it is only available from
2016. To correlate the data between 2013-2016, Landsat 8 data was used.

Cloud-free Landsat 8 satellite data of the Kamuzu reservoir were obtained for
the period 2013 to 2020 and Sentinel-2 for the period 2016 to 2020. This period
matched with the in-situ data collection dates. Landsat 8 images were pre-processed
and processed in ERDAS Imagine and SNAP. Band ratio algorithms, as discussed
above, were used to estimate the water quality parameters.

The resulting estimated parameters  from the satellite images were correlated
with in-situ water quality data to validate the results obtained from the satellite im-
ages while the other water quality parameters were illustrated as spatial distribution
maps.

3.4 In-situ Data

Lilongwe Water Board (LWB) is a Statutory Corporation established in 1947 as
a utility service provider and is responsible for the provision of water supply ser-
vices to the City of Lilongwe and it's surrounding after abstracting raw water from
the river through the two dams. The board periodically tests the water for various
parameters at the source of the water and treated water. Field sampling data of the
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LWB was acquired which consisted of TSM and turbidity measured and the location
of the sites from where the samples were collected. The LWB collects the data at 14
different points along the river. Out of the 14 data collection points, only 3 sampling
points fall in the study area viz., Katete, Kamuzu Dam I (KD-I), and Kamuzu Dam
II (KD-II) as shown in Figure 4. The data ranged from 2013 to 2020, although the
frequency of collection was inconsistent. The data obtained from LWB is shown in
Table 2.

Figure 4  Water Sample points on the study area

The satellite images of the same dates for which the sample was collected were
used for processing. However, for days when the cloud-free satellite image for the
said date was not available, a few days prior or post the date was selected and the
cloud-free  image was downloaded and processed  for  estimation of  water  quality
parameters. Care was taken so that no date of the satellite image is beyond 4 days of
the sample collection date. No storm or any other such events have been reported
from the region between the date of the sampling date and the date of the satellite
image used, the difference in the dates shall not have any effect on the water quality
parameter.

Field sampling dates corresponding with satellite imagery dates were also used
to perform a correlation and regression analysis.  Since only two parameters  viz.,
TSM and turbidity were available for  comparison, the correlation and regression
analysis of the satellite image estimated TSM and turbidity, with the field-collected
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samples of TSM and turbidity were used to determine the coefficient of determina-
tion (R2).

Table 2  In-situ data collected from LWB with name of the stations and the date

Co-ordinate (UTM) Date of Sample collection (mm/dd/yyyy)

Station
Northing
(m)

Easting
(m)

10/09/2013 04/10/2014 15/06/2016 04/08/2016 12/09/2017 05/07/2018 07/08/2018 09/09/2019 31/10/2019

Katete 564294 8429723 4.81 3.2 1.2 0.4 4 3 3 11 22

Kamuzu

Dam I
569230 8432931 12.1 10 2.4 5.2 9 15 4 14 26

Kamuzu

Dam II
574129 8433949 3 3.6 5.6 2 10 3 15 10 4

Co-ordinate (UTM) Date of Sample collection (mm/dd/yyyy)

Station
Northing
(m)

Easting
(m)

10/09/2013 04/10/2014 15/06/2016 04/08/2016 12/09/2017 05/07/2018 07/08/2018 09/09/2019 31/10/2019

Katete 564294 8429723 4.7 2.7 4.7 0.4 3.4 5.3 5.2 8.6 18.7

Kamuzu

Dam I
569230 8432931 16.5 6 2.9 3.6 5.1 13.7 7.4 7.9 20.9

Kamuzu

Dam II
574129 8433949 4.7 3.2 5.1 1.7 3.3 3.6 5 4.8 3.7

4 RESULTS AND DISCUSSION

The result of the estimated water quality parameter for the study is presented in
two parts. The first part describes the spatial distribution of the water quality para-
meters, as obtained from the satellite images using the band-ratio algorithm. In the
second part,  the co-relation of the estimated parameters  with the in-situ data has
been done and the co-relation coefficient has been estimated to see the efficacy of
the estimated water quality parameters vis-à-vis in-situ data.

4.1 Spatial distribution of estimated parameters using
Sentinel-2 data

The Sentinel-2 satellite data was used to estimate six water quality parameters
for the years 2016, 2017 and 2018. Figures 5, 6, and 7 show the spatial distribution
of Chl-a, TSM, turbidity, Secchi depth, cyanobacteria and CDOM as estimated us-
ing Sentinel-2 images for the years 2016, 2017 and 2018 respectively.  Figure 5a
shows  that  there  is  a high  concentration  of  chlorophyll-a towards  the  Katete
sampling point and some patches of high concentration towards KD-II. According to
Gholizadeh et al. (2016) there is a direct relationship between chlorophyll-a and cy-
anobacteria since cyanobacteria are capable of photosynthesis which needs chloro-
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phyll for successful processing. The relationship is evident in Figure 5a and 5e as
both the parameters have higher concentration near Katete whereas it decreases for
KD-I and KD-II sample points. Figures 5b, 5c, and 5d, show the spread of TSM,
Secchi depth, and turbidity. As can be seen that there are some patches of low con-
centration of TSM (Figure 5b) towards the KD-I and II, and Secchi depth (Figure
5d) is low for the same region whereas turbidity and Secchi depth shows a negative
correlation (Figure 5c and 5d). TSM and CDOM usually influence the scattering in
the water which is evident from Figure 5b and 5f. CDOM and TSM are in direct co-
relation as both the values are high near the southern tip of the water body whereas it
is uniformly distributed in the northern region. An increase in turbidity relates to less
plankton and hence less dissolved oxygen and Chl-a, which is also observed in Fig-
ure 5a and 5c.

Figure 5  Sentinel-2 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c)
turbidity, (d) Secchi depth, (e) cyanobacteria, and (f) CDOM for 2nd August 2016

Figures 6a-f shows the spatial distribution of the estimated water quality para-
meters for 2017 using the Sentinel image of 16th September 2017. The observation is
similar to the observation of 2016. As per Figure. 6a, there is a high concentration of
chlorophyll-a around the Katete sampling region, but the concentration is low to-
wards KD-II.  Figure 6b shows the distribution of Total Suspended Matter and is
high in the southern part whereas it reaches a minimum in the northern part near
KD-II. The spatial distribution of turbidity is represented in Figure 6c which is al-
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most similar and on the mid-high side for the entire study area, except for the north-
ern region where it is maximum. This is also reflected in the Secchi depth spatial
distribution in Figure 6d. For most of the region, the values are moderate whereas
for the northern region, the values are very less (wherever there is a higher value of
turbidity). Cyanobacteria and CDOM distribution are almost uniform throughout the
reservoir. Except for Figure 6e and f, all other distribution follows the conventional
patterns i.e., wherever there is more turbidity, the Secchi Depth is less representing
not-so-clear water, less Chl-a because of less dissolved oxygen and less plankton.

Figure 6  Sentinel 2 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c)
turbidity, (d) Secchi depth, (e) cyanobacteria, and (f) CDOM for 16th September 2017

The results obtained in Figure 7 for the year 2018 are similar to those in Figure
5 and 6 for years 2016 and 2017 respectively. The relationships observed between
water parameters are similar to the earlier years.

The three Sentinel-2 processed figures (Figures 5, 6, and 7) have shown vari-
ation in the Chl-a values. The estimated spatial distribution of Chl-a for 2017 and
2018 is almost similar.  However,  when Chl-a values are compared  with 2016, it
shows a major change in chlorophyll-a concentration for the KD-II sampling point
but almost similar values for Katete and KD-I, which has lower concentrations. The
high concentrations of Chl-a are observed from Katete running towards KD-I and
are similar for all three years for which the study has been done. The high concentra-
tion around Katete and KD-I region can be attributed to the fact that there are settle-
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ments and agricultural  activities around the region and agricultural  and domestic
wastes end up in the water leading to high concentrations of Chl-a. The values of
Chl-a decrease northwards as there are fewer settlements around the dam area and
almost no effluents are passed onto the water body. However, the concentration of
Chl-a in 2016 in the northern region was almost similar to that of the southern part,
which needs to be studied in more detail.

Figure 7  Sentinel-2 spatial distribution maps showing (a) chlorophyll-a, (b) TSM,
(c)    turbidity, (d) Secchi depth, (e) cyanobacteria, and (f) CDOM for 3rd July 2018

The Figures 5-10 also show the relationship that is there between Secchi depth,
turbidity, and TSM. All the figures show a direct relationship between Secchi depth
and TSM while there is an inverse relationship between Secchi depth and turbidity.
The depth of water transparency is low towards the KD-II compared to the KD-I and
Katete sampling regions, at the same time TSM concentration is low while turbidity
concentration is high.

4.2 Spatial distribution of estimated parameters using
Landsat data

Landsat 8 satellite data was used to estimate five water quality parameters for
the years 2013, 2014 and 2019. Figures 8, 9, and 10 show the spatial distributions of
Chl-a, TSM, turbidity, Secchi depth and CDOM, as estimated from the Landsat 8
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data. The spatial distribution of these parameters for all the years is almost similar as
can be observed in the figures. The Chl-a distribution indicates a high concentration
towards the Katete sampling region but has a low concentration towards the KD-I &
II. CDOM distribution shows a low concentration near Katete which increases to-
wards KD-I and increases further towards KD-II and remains almost uniform near
KD-II. Turbidity and Secchi depth distribution show an inverse relationship, which
is expected, and turbidity increases from Katete to KD-I and further towards KD-II
and corresponding Secchi depth decreases from Katete towards KD-I and further to
KD-II. TSM and turbidity also follow an inverse relationship for the region between
Katete and KD-I, however, for the area around KD-II, the turbidity has a very high
value, but the TSM does not vary accordingly. There are some patches in the area
around KD-II where the TSM varies from moderate to low which is also reflected
similarly in the distribution of Secchi depth. A few patches of low concentration of
TSM and Secchi depth near the KD-II sampling point need to be investigated more,
as all other parameters are distributed as expected.

Figure 8  Landsat 8 spatial distribution maps showing (a) chlorophyll-a, (b) TSM,
(c) turbidity, (d) Secchi depth, and (e) CDOM for September 2013

Comparing the results of parameters between the time series, the Chl-a is al-
most similar for Katete between 2013, 2014 and 2019. However, the value increases
in 2014 from 2013 and then decreases in 2019. CDOM values for all the years are
similar for all the observation stations and are more or less uniform over the period.
Turbidity is least at Katete station for all the years but has increased over time. For
KD-I, the turbidity increases as compared to Katete and further increases around the
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observation point KD-II. Turbidity in the northern region near KD-II is maximum
for all the years but decreases in 2014 as compared to 2013 but again increases in
2019. For all the years, Secchi depth is inversely related to turbidity and the same is
the case with TSM.

Figure 9  Landsat 8 spatial distribution maps showing (a) chlorophyll-a, (b) TSM,
(c) turbidity, (d) Secchi depth, and (e) CDOM for October 2014

4.3 Validation of the estimated data vs in-situ data using
correlation and regression analysis

As stated earlier, only two data viz., turbidity and TSM were common between
the estimated and in-situ data collected for the study area during the study period.
A correlation and regression analysis was performed between the two data to under-
stand  the  efficacy  of  the  satellite  image-derived  water  quality  parameters  and
whether these could replace the manual and tedious data collection procedure. In-
situ data were available for 3 sampling points over a period resulting in 15-20 data
points to be validated depending upon the availability of the cloud-free satellite data.
For all the sample points the TSM and turbidity values were read from the satellite-
generated TSM and turbidity spatial distribution maps (Figures 5-10). Since these
estimated data were found using band-ratio algorithms, the resultant values were di-
mensionless. A co-relation graph between the observed and estimated values was
plotted, as shown in Figure 11.
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Figure 10  Landsat 8 spatial distribution maps showing (a) chlorophyll-a, (b) TSM,
(c) Turbidity, (d) Secchi depth, and (e) CDOM for September 2019

Figure 11  Co-relation graph between observed and estimated values of TSM and
turbidity for Landsat 8 and Sentinel-2 satellite data
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Figure 11a and Fibure 11b are the co-relation curve for Sentinel-2 data vis-à-vis
observed values as obtained by field sampling whereas Figure 11c and Fibure 11d
are that of Landsat 8. It was observed that the co-relation coefficient of TSM is 0.9
(Figure 11b) and that of turbidity is 0.7 ( Figure 11a). The same for Landsat 8 was
found to be 0.6 (Figure 11c) and 0.56 ( Figure 11d) respectively. As the turbidity
and TSM values show a strong co-relation for Sentinel-2 data as compared to the
Landsat 8 data, the same may be used to estimate the TSM and turbidity values to
a reasonable accuracy. However, the number of sample points was less, nonetheless,
it can be concluded that Sentinel-2 satellite data and band-ratio algorithms can be
used to fairly estimate the water quality parameters for a large water body as has
also been  reported  by several  other  studies.  The better  accuracy  of Sentinel-2 is
a result of the better spatial resolution of the satellite data than the Landsat 8 data.
Since the observed samples over the years were not tested for other parameters and
hence the estimated values could not be compared, a fair assessment of the parame-
ters can be done using satellite data. The observed and estimated values of the two
parameters for both Sentinel-2 and Landsat are compiled in Table 3.

The variation in the estimated data for some of the parameters at a few locations
may be attributed to the fact that the water body under study is a fairly large water
body and the samples were taken only from the banks of the river and the dam,
whereas the satellite data used in the study was of 10 m and 30 m spatial resolution
spread over the entire dam. Better spatial resolution such as 5 m or 1m satellite data
may result in better estimation of the water quality parameters.

5 CONCLUSION

Remote sensing offers an effective solution to address some of the challenges
encountered  in  water  quality  monitoring.  By  conducting  a correlation  analysis
between Total Suspended Matter (TSM) and turbidity derived from Sentinel-2 satel-
lite imagery and comparing it with in-situ data, it has been observed that reliable
precision can be achieved in estimating turbidity and TSM using satellite images.
The findings indicate that Sentinel-2 outperforms Landsat 8 in estimating these para-
meters due to its superior spatial resolution. Consequently, it can also be concluded
that remote sensing data plays a vital role in facilitating effective water quality mon-
itoring.

Furthermore, the results demonstrate the significant potential of Sentinel-2 and
Landsat 8 data in estimating various water quality parameters such as chlorophyll-
a (Chl-a), TSM, turbidity, cyanobacteria, CDOM concentrations, and Secchi Depth
through band ratio algorithms. This enables the estimation and assessment of water
quality  on a broader  spatial  scale  through the creation  of  distribution maps.  The
study also highlights the capability of remote sensing to overcome the limitations of
in-situ  data availability,  particularly  regarding  the infrequent  sampling frequency
over seven years. Sentinel-2 and Landsat 8, with their short revisit times of 5 and 16
days respectively, offer a solution to this problem.
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Table 3  Comparison between in-situ and satellite-based estimated values

TSM (mg/l) using Sentinel-2 data Turbidity (NTU) using Sentinel-2 data

Band
Ratio

Observed TSM
(mg/l)

Estimated
(mg/l)

0.839 22 19.3

0.665 15 15.5

0.6174 15 14.5

0.478 10 11.4

0.393 9 9.5

0.245 5.2 6.3

0.188 2 5.0

0.0945 3 3.0

0.0387 4 1.8

0.03245 4 1.6

0.0312 4 1.6

0.0147 3 1.2

0.0955 3 3.0

0.07855 0.4 2.6

0.188 2 5.0

Band Ratio
Turbidity

(NTU)
Estimated

(NTU)

2.38741 3.7 9.0

2.78692 7.4 11.4

3.38351 18.7 15.1

3.39559 20.9 15.1

2.95602 13.7 12.5

2.59058 5.2 10.3

1.6134 1.7 4.4

1.92245 3.6 6.2

1.5526 3.3 4.0

1.42522 3.4 3.2

1.42797 5.1 3.2

1.3705 5.3 2.9

1.02439 5 0.8

1.21774 3.6 2.0

1.0311 0.4 0.9

TSM (mg/l) from Landsat 8 data Turbidity (NTU) from Landsat 8 data

Band
Ratio

Observed TSM
(mg/l)

Estimated
(NTU)

0.60014 2 5.4

0.97948 10 13.4

0.97677 12.1 13.4

0.65855 4 6.7

0.7251 5.6 8.1

0.91895 15 12.2

0.9254 22 12.3

0.76144 14 8.8

0.63851 3 6.2

0.6958 10 7.5

0.41187 1.2 1.5

0.63446 2.4 6.2

Band ratio
Turbidity

(NTU)
Estimated

(NTU)

1.15363 3.2 1.5

1.5567 4.7 3.6

2.99668 8.6 10.8

3.82953 18.7 15.0

3.84342 20.9 15.1

2.55437 7.4 8.6

2.93637 5.1 10.5

2.26803 1.7 7.2

2.54111 5.2 8.5

2.56268 3.6 8.6

1.97594 7.9 5.7

2.92536 16.5 10.5
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0.61871 3.2 5.8

0.084511 0.4 -5.4

0.62848 5.2 6.0

0.62753 3.6 6.0

0.6463 4.81 6.4

0.74577 11 8.5

0.53297 4 4.0

0.6958 10 7.5

0.62819 3 6.0

2.23547 6 7.0

2.40942 5 7.9

1.66672 4.8 4.1

1.463 4.7 3.1

1.44535 2.7 3.0

1.21165 4.7 1.8

1.15388 3.7 1.5

1.02939 2.9 0.9

1.49234 0.4 3.2

The study further reveals that the upstream region from Katete to Kamuzu Dam
I exhibits the highest concentrations of all water parameters in the reservoir com-
pared to the region between Kamuzu Dam I and Kamuzu Dam II. This region coin-
cides with the high population density and numerous anthropogenic activities, pre-
dominantly farming. Consequently, the reservoir acts as a receptor for agricultural
effluents washed off by runoff in this area.

The authors conducted offline processing of downloaded satellite images, which
proved time-consuming. However, the availability of historical and current satellite
data, along with processing tools offered by the Google Earth Engine (GEE) plat-
form, has simplified and expedited water quality assessments. For a comprehensive
understanding of the seasonal variation of water quality parameters and their rela-
tionship with anthropogenic activities in the region, future studies could utilize GEE
to analyze the evolving water quality of the reservoir.
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Porovnanie a vzťah medzi odhadovanými parametrami kvality vody 
použitím algoritmu údajov Sentinel-2 a Landsat 8 a pozorovanými 
parametrami na príklade vodnej nádrže Kamuzu na rieke Lilongwe 
v Malawi

Súhrn

Príspevok bol zameraný na vyhodnotenie účinnosti satelitného snímkovania pri od-
hadovaní parametrov kvality vody, čím sa eliminuje potreba návštev a  odberu vzo-
riek vody na mieste. V úvode sa v článku diskutuje o rôznych metódach používa-
ných  na  výpočet  parametrov  kvality  vody  a o tom,  ako  môžu  satelitné  snímky
urýchliť proces odhadu v intervaloch definovaných používateľom.  Spomínajú sa
tu aj predchádzajúce výskumy iných autorov v tejto oblasti. Následne je predstave-
ná nádrž Kamuzu, jej okolie a jej význam pre Malawi. Vysvetľuje význam nádrže
a priehrady pre krajinu. Ďalšia časť je venovaná metodológii použitej v rámci štú-
die. Sú opísané rôzne typy použitých údajov, ich zdroje a metódy spracovania. Táto
časť tiež vysvetľuje kroky podniknuté na integráciu údajov potrebných na získanie
výsledkov. V tejto štúdii autori použili údaje zo satelitov Sentinel-2 a Landsat 8 na
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odhad rôznych parametrov kvality vody, ako sú chlorofyl-a (Chl-a), celkové neroz-
pustné látky (TSS), zákal, hĺbka Secchi (SD), cyanobaktérie a farebne rozpustená
organická hmota (CDOM). Odhadované hodnoty sa potom porovnali s údajmi in-
situ zozbieranými v rieke Lilongwe v Malawi. V časti Výsledky a diskusia sú uve-
dené  zistenia  štúdie.  Sentinel-2  poskytol  presnejšie  odhady  zákalu  a celkového
množstva nerozpustených látok v porovnaní s hodnotami odvodenými z Landsat 8.
Táto prednosť je spôsobená predovšetkým vyšším priestorovým rozlíšením satelit-
ných snímok Sentinel-2. Súčasťou štúdie sú aj mapy priestorového rozmiestnenia
ostatných parametrov v nádrži, ktoré boli vypracované a navzájom porovnané. Pa-
rametre odhadnuté z oboch satelitných snímok ukázali silnú koreláciu a konzistent-
né priestorové rozloženie. Napríklad porovnanie medzi mapami Chl-a a cyanobak-
térií  preukázalo priamy vzťah,  pretože sinice vyžadujú na fotosyntézu chlorofyl.
Okrem toho zákal a hĺbka Secchi (SD) vykazovali negatívnu koreláciu, čo je zrejmé
z výsledných máp priestorového rozloženia odvodených z údajov Landsat a Senti-
nel-2. Štúdia tiež dokázala priamu koreláciu medzi celkovým množstvom suspen-
dovaných  pevných  látok  (TSM)  a farebne  rozpustenou  organickou  hmotou
(CDOM),  čo je  v súlade so zisteniami iných autorov.  Zákal a rozpustený kyslík
(DO), ako aj zákal a Chl-a vykazovali negatívne korelácie, ktoré boli pozorované
v mapách  priestorového  rozloženia  odvodených  z údajov  Landsat  a Sentinel-2.
Okrem toho štúdia vypočítala algoritmus pomeru pásma pomocou satelitných úda-
jov na odhad zákalu a TSM. Tieto odhady sa potom porovnali s údajmi in-situ zo-
zbieranými  v rieke  Lilongwe  v Malawi.  Výsledky  ukázali  pozitívnu  koreláciu
medzi pomerom pásiem a údajmi in-situ,  s hodnotou R2 0,7 pre zákal a 0,9 pre
TSM s použitím údajov Sentinel-2. Landsat však poskytol nižšie hodnoty R2 0,6
pre zákal aj TSM. Na základe týchto zistení štúdia dospela k záveru, že údaje zo sa-
telitov Sentinel-2 s vyšším priestorovým rozlíšením 10 metrov možno efektívne po-
užiť na odhad turbidity a TSM. Okrem toho parametre kvality vody odvodené zo
satelitu ponúkajú životaschopnú alternatívu k časovo náročnému a nepravidelnému
procesu zberu údajov in-situ.

V časti Záver sú zhrnuté hlavné zistenia štúdie. Parametre kvality vody odvodené
zo satelitu môžu slúžiť ako budúca alternatíva na urýchlenie tvorby máp kvality
vody a uľahčenie včasných opatrení na zabránenie vážneho poškodenia vodných út-
varov. Dostupnosť bezplatných satelitných údajov na platformách, ako je Google
Earth Engine, spolu s možnosťami cloud computingu ďalej podporuje aplikáciu tej-
to metodiky na odhadovanie parametrov kvality vody pre akýkoľvek región a to
hneď, ako budú satelitné údaje k dispozícii používateľom, zvyčajne však do týždňa.
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	Water is a very critical resource that ensures economic and developmental growth (Cherif et al., 2019). Water quality is one of the most fundamental aspects of freshwater resources that are studied when it comes to water being supplied to the population for consumption (Potes et al., 2018). Water quality is the measure of chemical, physical and biological parameters for the suitability of water for human and animal consumption as well as for industrial usage (Nyasulu, 2012). Water quality is assessed through different parameters to understand its effect on human and aquatic life health (Stevenson, 1953). Surface and subsurface water quality monitoring is also conducted for a variety of reasons including environmental reporting and research. It is measured by several parameters such as dissolved oxygen, nutrients, turbidity, hardness and phytoplankton etc. (Gholizadeh et al., 2016).
	Natural water resources such as rivers and lakes are the major source of water supply to urban cities. Water pollution, all across the globe, has become one of the major problems affecting the water quality (Nyasulu, 2012) of these water resources. Infrastructural development and industrialization are some of the factors leading to the contamination of water resources resulting in poor water quality (Phiri et al., 2005). The key causes of contamination to these natural resources as well as groundwater resources are the ejection of industrial effluents and domestic sewage, which comprises organic pollutants, heavy metals, chemicals and run-off from human activities as well as construction and agriculture (Goldar and Banerjee, 2004). Total Suspended Solids (TSS) is the measure of total organic and inorganic compounds suspended in water while Total Dissolved Solids (TDS) is the measure of total inorganic chemicals including salts and organic compounds dissolved in water (Soomets et al., 2020). Runoff from built environments and effluents leads to an increase in the TSS and TDS which degrade the quality of water (Khan and Ghouri, 2011). Cultivation along the river banks on the other hand leads to runoff rich in nutrients, due to the use of pesticides and fertilizers, which contributes to the formation of algal blooms (Chimwanza et al., 2006) due to the presence of phosphorus and nitrogen in fertilizers (Pereira et al., 2018). Excess quantities of these nutrients lead to a decrease in Dissolved Oxygen (DO) leading to the formation of harmful algae blooms in water bodies.
	Water quality is usually calculated through in situ sample collection & measurements and laboratory measurements. These methods have been in use for many years and provide accurate results if proper procedures are followed (Elhag et al., 2019). These methods, however, have their drawbacks. They are laborious, time-consuming, have minimal spatial coverage of water bodies due to access and reach, and the frequency of water sample collection is limited. Sensors have also been deployed in many cases for continuous measurement of water quality parameters but they have their limitations (Sicard et al., 2015). Compared to in situ measurements, satellite images provide large spatial extent and temporal variations of water bodies (Sagan et al., 2020). Depending on the sensor used, satellite images with a short revisit time enable water bodies to be monitored frequently (Bande et al., 2018). Satellite images also help in estimating the water quality of water bodies, not easily accessible (Peppa et al., 2020). Satellite images from Sentinel and Landsat have been used by several authors in monitoring water quality in different parts of the world (Gholizadeh et al., 2016; Bandel et al., 2018; Elhag et al., 2019; Topp et al., 2020; Chen et al., 2020; Kim et al., 2020; Katlane et al., 2020; Shi et al., 2020; Silva et al., 2021).
	The primary objective of this study is to assess the effectiveness of using satellite images as an alternative approach for estimating water quality in water bodies, eliminating the need for on-site visits and in-situ water sampling. This methodology has not been extensively explored in the region under study, and given that the Kamuzu reservoir serves as a vital water source for Malawi, it is crucial to monitor its water quality regularly. Due to the inconsistent collection of water samples in previous years, this study can provide valuable insights for authorities to monitor water quality at regular intervals and implement appropriate measures if necessary.
	Lilongwe River runs through Lilongwe, the capital of Malawi, which is experiencing development and a rise in urbanization (Chidya et al., 2016), and a lot of discharge from industrial, domestic, and agricultural activities ends up in this river. The study was conducted on the Lilongwe River in the Lilongwe district of the central region of Malawi to understand the change in the water quality of the dam due to anthropogenic activities. Lilongwe district lies between 14.50 and 13.50 S latitude and between 33.50 and 34.50 E longitude (Figure 1). Dzalanyama mountain range borders the country of Mozambique where the river originates. The river spans a length of approximately 100 km with a catchment area of about 1800 km2 (Nyasulu, 2012). There are two dams on the Lilongwe River which are used by the Lilongwe Water Board (LWB) for supplying water to the city. These are Kamuzu Dam I (14.170 S and 33.640 E) which was constructed on the Zambezi basin in 1966 and have a capacity of 4,500,000 m3, and Kamuzu Dam II (14.160 S and 33.680 E) which was constructed in 1989, just below Kamuzu Dam I, and later rehabilitated in 1992, has a capacity of 19,800,000 m3. Kamuzu Dam I (KD-I) acts as a balancing reservoir and its outflow goes directly into Kamuzu Dam II (KD-II). The reservoir, named Kamuzu Reservoir (Figure 2) was studied for the present work.
	Some authors have studied the water quality of the area (Nyasulu, 2012) and its relationship with land use and landcover (Nkwanda et al., 2021), but no study has been conducted to assess the variations in water quality parameters of the reservoir and estimation of water quality parameters using satellite images. In this study, the spatial spread of water quality parameters across the reservoir has been derived using the band ratio algorithm using satellite images and the same has been compared with the in-situ data.
	Figure 1 Locator Map of Study Area
	Figure 2 Kamuzu Reservoir along Lilongwe River, Central Malawi, and the location of the Dams
	In the present study, the satellite data was used to estimate the water quality parameters which was compared with the in-situ data of the same period. The estimated and in-situ values were further analysed through correlation and regression. The flow chart followed in the study is shown in Figure 3 which shows the different steps followed for the estimation of water quality using different band ratios for Landsat and Sentinel-2 data and its correlation with the in-situ data and the distribution of the water quality parameter in the reservoir. The satellite data (Sentinel-2 and Landsat 8 images) were downloaded from their respective websites (Copernicus https://scihub.copernicus.eu/ for Sentinel-2 and Earth Explorer https://earthexplorer.usgs.gov/ for Landsat 8). Atmospheric correction was applied to the Landsat 8 data, whereas for the Sentinel-2 data no such correction was applied, as it was already corrected for the effects of atmosphere. Both the data sets were clipped using a study-area shapefile to get the image for the study only. Suitable band ratio algorithms (Table 1) were applied to the images to estimate the water quality parameter.
	Figure 3 Methodology flowchart showing different steps
	The estimated results of water quality parameters from the algorithms were used in a correlation and regression analysis with in-situ data for obtaining the coefficient of determination (R2). For the values obtained from the processed images to correlate with in situ data, an average pixel value was extracted from a 5×5 pixel window corresponding to the geographical coordinate of the water sampling point. This was necessary to avoid any bias in the estimated values, as a single pixel value may not represent the parameter value correctly.
	Table 1 Band ratios used to retrieve Chl-a, TSM, turbidity, CDOM, SD and cyanobacteria from satellite images
	For Sentinel-2, R denotes the reflectance and the particular number after R denotes the wavelength. For Landsat 8, Rrs denotes the reflectance and Blue, Green, Red denotes the bands. Kd is the light attenuation coefficient.
	3.1 Sentinel-2 MSI data
	Sentinel-2, which was launched in 2015, is a European wide-swath, high-resolution, multi-spectral imaging mission. It comprises 2 twin satellites, Sentinel-2A & 2B having a 5-day revisit frequency time. Sentinel-2 carries an optical instrument payload that samples 12 spectral bands: four bands at 10 m (Bands 2, 3, 4 and 8), six bands at 20 m (Bands 5, 6, 7, 8A, 11 and 12) and three bands at 60 m spatial resolution (Bands 1, 9 and 10). Cloud-free Sentinel-2 Level 1C (L1C) MSI data for the study area for the study period has been downloaded which comprises 100 sq. km tiles. A total of 5 cloud-free images (2016-2020) corresponding to the dates of the field sampling (±5 days) were downloaded and processed.
	3.2 Landsat 8 data
	Landsat 8 is an American Earth Observation Satellite which was launched in 2013 and carries two sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). OLI collects data in eight spectral bands (Bands 1-7 and 9) with a spatial resolution of 30 m. Band 8 collects the data with a spatial resolution of 15 m in a panchromatic band. TIRS measures thermal data at 100 m spatial resolution using two bands 10 and 11. Cloud-free Landsat 8 images were downloaded from the United States Geological Survey (USGS). These images were downloaded to match the dates of Lilongwe Water Board field sampling data (±5 days). A total number of 7 cloud-free (2013-2020) images corresponding to the field sampling dates were downloaded and processed.
	3.3 Estimation of water quality parameters using satellite data
	Kutser et al. (2016) used the vegetation red edge and NIR in Sentinel-2 to estimate Total Suspended Matter (TSM) and obtained positive results. Gholizadeh et al. (2016) studied many possibilities of band math in Landsat 8 to estimate Chl-a, Secchi depth, Coloured Dissolved Organic Matter (CDOM), Total Suspended Matter (TSM), and turbidity. Potes et al. (2018) used the green and coastal aerosol bands and the green, blue and red bands in Sentinel-2 to map turbidity and cyanobacteria respectively in a reservoir. They concluded that Sentinel-2 had a high potential to monitor turbidity and cyanobacteria. Bresciani et al. (2019) used Sentinel-2 and Landsat 8 to estimate chlorophyll-a, turbidity, and Secchi depth in two reservoirs. They used the Modular Inversion and Processing System to retrieve these parameters. Bande et al. (2018) compared Sentinel-2 and Landsat 8 to generate the effectiveness of one satellite over the other. They estimated the concentration of chlorophyll-a using the coastal aerosol, blue, green and red bands while the blue and red bands were used to estimate turbidity. The results showed that Sentinel-2 had an edge over Landsat 8 data because of its better resolution. Soomets et al. (2020) estimated TSM, Chl-a, Secchi depth, and CDOM from Sentinel-2 data using several band ratio algorithms. They obtained good results after comparison with in-situ data. The various band ratios used for the calculation of the water quality parameters, in the present study are listed in Table 1. These ratios are based on the above studies.
	Since the in-situ data were collected between the period of 2013 to 2020, Sentinel-2 satellite data could not be used for the entire study as it is only available from 2016. To correlate the data between 2013-2016, Landsat 8 data was used.
	Cloud-free Landsat 8 satellite data of the Kamuzu reservoir were obtained for the period 2013 to 2020 and Sentinel-2 for the period 2016 to 2020. This period matched with the in-situ data collection dates. Landsat 8 images were pre-processed and processed in ERDAS Imagine and SNAP. Band ratio algorithms, as discussed above, were used to estimate the water quality parameters.
	The resulting estimated parameters from the satellite images were correlated with in-situ water quality data to validate the results obtained from the satellite images while the other water quality parameters were illustrated as spatial distribution maps.
	3.4 In-situ Data
	Lilongwe Water Board (LWB) is a Statutory Corporation established in 1947 as a utility service provider and is responsible for the provision of water supply services to the City of Lilongwe and it's surrounding after abstracting raw water from the river through the two dams. The board periodically tests the water for various parameters at the source of the water and treated water. Field sampling data of the LWB was acquired which consisted of TSM and turbidity measured and the location of the sites from where the samples were collected. The LWB collects the data at 14 different points along the river. Out of the 14 data collection points, only 3 sampling points fall in the study area viz., Katete, Kamuzu Dam I (KD-I), and Kamuzu Dam II (KD-II) as shown in Figure 4. The data ranged from 2013 to 2020, although the frequency of collection was inconsistent. The data obtained from LWB is shown in Table 2.
	Figure 4 Water Sample points on the study area
	The satellite images of the same dates for which the sample was collected were used for processing. However, for days when the cloud-free satellite image for the said date was not available, a few days prior or post the date was selected and the cloud-free image was downloaded and processed for estimation of water quality parameters. Care was taken so that no date of the satellite image is beyond 4 days of the sample collection date. No storm or any other such events have been reported from the region between the date of the sampling date and the date of the satellite image used, the difference in the dates shall not have any effect on the water quality parameter.
	Field sampling dates corresponding with satellite imagery dates were also used to perform a correlation and regression analysis. Since only two parameters viz., TSM and turbidity were available for comparison, the correlation and regression analysis of the satellite image estimated TSM and turbidity, with the field-collected samples of TSM and turbidity were used to determine the coefficient of determination (R2).
	Table 2 In-situ data collected from LWB with name of the stations and the date
	4 RESULTS AND DISCUSSION
	The result of the estimated water quality parameter for the study is presented in two parts. The first part describes the spatial distribution of the water quality parameters, as obtained from the satellite images using the band-ratio algorithm. In the second part, the co-relation of the estimated parameters with the in-situ data has been done and the co-relation coefficient has been estimated to see the efficacy of the estimated water quality parameters vis-à-vis in-situ data.
	4.1 Spatial distribution of estimated parameters using
	Sentinel-2 data
	The Sentinel-2 satellite data was used to estimate six water quality parameters for the years 2016, 2017 and 2018. Figures 5, 6, and 7 show the spatial distribution of Chl-a, TSM, turbidity, Secchi depth, cyanobacteria and CDOM as estimated using Sentinel-2 images for the years 2016, 2017 and 2018 respectively. Figure 5a shows that there is a high concentration of chlorophyll-a towards the Katete sampling point and some patches of high concentration towards KD-II. According to Gholizadeh et al. (2016) there is a direct relationship between chlorophyll-a and cyanobacteria since cyanobacteria are capable of photosynthesis which needs chlorophyll for successful processing. The relationship is evident in Figure 5a and 5e as both the parameters have higher concentration near Katete whereas it decreases for KD-I and KD-II sample points. Figures 5b, 5c, and 5d, show the spread of TSM, Secchi depth, and turbidity. As can be seen that there are some patches of low concentration of TSM (Figure 5b) towards the KD-I and II, and Secchi depth (Figure 5d) is low for the same region whereas turbidity and Secchi depth shows a negative correlation (Figure 5c and 5d). TSM and CDOM usually influence the scattering in the water which is evident from Figure 5b and 5f. CDOM and TSM are in direct co-relation as both the values are high near the southern tip of the water body whereas it is uniformly distributed in the northern region. An increase in turbidity relates to less plankton and hence less dissolved oxygen and Chl-a, which is also observed in Figure 5a and 5c.
	Figure 5 Sentinel-2 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c) turbidity, (d) Secchi depth, (e) cyanobacteria, and (f) CDOM for 2nd August 2016
	Figures 6a-f shows the spatial distribution of the estimated water quality parameters for 2017 using the Sentinel image of 16th September 2017. The observation is similar to the observation of 2016. As per Figure. 6a, there is a high concentration of chlorophyll-a around the Katete sampling region, but the concentration is low towards KD-II. Figure 6b shows the distribution of Total Suspended Matter and is high in the southern part whereas it reaches a minimum in the northern part near KD-II. The spatial distribution of turbidity is represented in Figure 6c which is almost similar and on the mid-high side for the entire study area, except for the northern region where it is maximum. This is also reflected in the Secchi depth spatial distribution in Figure 6d. For most of the region, the values are moderate whereas for the northern region, the values are very less (wherever there is a higher value of turbidity). Cyanobacteria and CDOM distribution are almost uniform throughout the reservoir. Except for Figure 6e and f, all other distribution follows the conventional patterns i.e., wherever there is more turbidity, the Secchi Depth is less representing not-so-clear water, less Chl-a because of less dissolved oxygen and less plankton.
	Figure 6 Sentinel 2 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c) turbidity, (d) Secchi depth, (e) cyanobacteria, and (f) CDOM for 16th September 2017
	The results obtained in Figure 7 for the year 2018 are similar to those in Figure 5 and 6 for years 2016 and 2017 respectively. The relationships observed between water parameters are similar to the earlier years.
	The three Sentinel-2 processed figures (Figures 5, 6, and 7) have shown variation in the Chl-a values. The estimated spatial distribution of Chl-a for 2017 and 2018 is almost similar. However, when Chl-a values are compared with 2016, it shows a major change in chlorophyll-a concentration for the KD-II sampling point but almost similar values for Katete and KD-I, which has lower concentrations. The high concentrations of Chl-a are observed from Katete running towards KD-I and are similar for all three years for which the study has been done. The high concentration around Katete and KD-I region can be attributed to the fact that there are settlements and agricultural activities around the region and agricultural and domestic wastes end up in the water leading to high concentrations of Chl-a. The values of Chl-a decrease northwards as there are fewer settlements around the dam area and almost no effluents are passed onto the water body. However, the concentration of Chl-a in 2016 in the northern region was almost similar to that of the southern part, which needs to be studied in more detail.
	Figure 7 Sentinel-2 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c)    turbidity, (d) Secchi depth, (e) cyanobacteria, and (f) CDOM for 3rd July 2018
	The Figures 5-10 also show the relationship that is there between Secchi depth, turbidity, and TSM. All the figures show a direct relationship between Secchi depth and TSM while there is an inverse relationship between Secchi depth and turbidity. The depth of water transparency is low towards the KD-II compared to the KD-I and Katete sampling regions, at the same time TSM concentration is low while turbidity concentration is high.
	4.2 Spatial distribution of estimated parameters using
	Landsat data
	Landsat 8 satellite data was used to estimate five water quality parameters for the years 2013, 2014 and 2019. Figures 8, 9, and 10 show the spatial distributions of Chl-a, TSM, turbidity, Secchi depth and CDOM, as estimated from the Landsat 8 data. The spatial distribution of these parameters for all the years is almost similar as can be observed in the figures. The Chl-a distribution indicates a high concentration towards the Katete sampling region but has a low concentration towards the KD-I & II. CDOM distribution shows a low concentration near Katete which increases towards KD-I and increases further towards KD-II and remains almost uniform near KD-II. Turbidity and Secchi depth distribution show an inverse relationship, which is expected, and turbidity increases from Katete to KD-I and further towards KD-II and corresponding Secchi depth decreases from Katete towards KD-I and further to KD-II. TSM and turbidity also follow an inverse relationship for the region between Katete and KD-I, however, for the area around KD-II, the turbidity has a very high value, but the TSM does not vary accordingly. There are some patches in the area around KD-II where the TSM varies from moderate to low which is also reflected similarly in the distribution of Secchi depth. A few patches of low concentration of TSM and Secchi depth near the KD-II sampling point need to be investigated more, as all other parameters are distributed as expected.
	Figure 8 Landsat 8 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c) turbidity, (d) Secchi depth, and (e) CDOM for September 2013
	Comparing the results of parameters between the time series, the Chl-a is almost similar for Katete between 2013, 2014 and 2019. However, the value increases in 2014 from 2013 and then decreases in 2019. CDOM values for all the years are similar for all the observation stations and are more or less uniform over the period. Turbidity is least at Katete station for all the years but has increased over time. For KD-I, the turbidity increases as compared to Katete and further increases around the observation point KD-II. Turbidity in the northern region near KD-II is maximum for all the years but decreases in 2014 as compared to 2013 but again increases in 2019. For all the years, Secchi depth is inversely related to turbidity and the same is the case with TSM.
	Figure 9 Landsat 8 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c) turbidity, (d) Secchi depth, and (e) CDOM for October 2014
	4.3 Validation of the estimated data vs in-situ data using
	correlation and regression analysis
	As stated earlier, only two data viz., turbidity and TSM were common between the estimated and in-situ data collected for the study area during the study period. A correlation and regression analysis was performed between the two data to understand the efficacy of the satellite image-derived water quality parameters and whether these could replace the manual and tedious data collection procedure. In-situ data were available for 3 sampling points over a period resulting in 15-20 data points to be validated depending upon the availability of the cloud-free satellite data. For all the sample points the TSM and turbidity values were read from the satellite-generated TSM and turbidity spatial distribution maps (Figures 5-10). Since these estimated data were found using band-ratio algorithms, the resultant values were dimensionless. A co-relation graph between the observed and estimated values was plotted, as shown in Figure 11.
	Figure 10 Landsat 8 spatial distribution maps showing (a) chlorophyll-a, (b) TSM, (c) Turbidity, (d) Secchi depth, and (e) CDOM for September 2019
	Figure 11 Co-relation graph between observed and estimated values of TSM and turbidity for Landsat 8 and Sentinel-2 satellite data
	Figure 11a and Fibure 11b are the co-relation curve for Sentinel-2 data vis-à-vis observed values as obtained by field sampling whereas Figure 11c and Fibure 11d are that of Landsat 8. It was observed that the co-relation coefficient of TSM is 0.9 (Figure 11b) and that of turbidity is 0.7 ( Figure 11a). The same for Landsat 8 was found to be 0.6 (Figure 11c) and 0.56 ( Figure 11d) respectively. As the turbidity and TSM values show a strong co-relation for Sentinel-2 data as compared to the Landsat 8 data, the same may be used to estimate the TSM and turbidity values to a reasonable accuracy. However, the number of sample points was less, nonetheless, it can be concluded that Sentinel-2 satellite data and band-ratio algorithms can be used to fairly estimate the water quality parameters for a large water body as has also been reported by several other studies. The better accuracy of Sentinel-2 is a result of the better spatial resolution of the satellite data than the Landsat 8 data. Since the observed samples over the years were not tested for other parameters and hence the estimated values could not be compared, a fair assessment of the parame-ters can be done using satellite data. The observed and estimated values of the two parameters for both Sentinel-2 and Landsat are compiled in Table 3.
	The variation in the estimated data for some of the parameters at a few locations may be attributed to the fact that the water body under study is a fairly large water body and the samples were taken only from the banks of the river and the dam, whereas the satellite data used in the study was of 10 m and 30 m spatial resolution spread over the entire dam. Better spatial resolution such as 5 m or 1m satellite data may result in better estimation of the water quality parameters.
	Remote sensing offers an effective solution to address some of the challenges encountered in water quality monitoring. By conducting a correlation analysis between Total Suspended Matter (TSM) and turbidity derived from Sentinel-2 satellite imagery and comparing it with in-situ data, it has been observed that reliable precision can be achieved in estimating turbidity and TSM using satellite images. The findings indicate that Sentinel-2 outperforms Landsat 8 in estimating these parameters due to its superior spatial resolution. Consequently, it can also be concluded that remote sensing data plays a vital role in facilitating effective water quality monitoring.
	Furthermore, the results demonstrate the significant potential of Sentinel-2 and Landsat 8 data in estimating various water quality parameters such as chlorophyll-a (Chl-a), TSM, turbidity, cyanobacteria, CDOM concentrations, and Secchi Depth through band ratio algorithms. This enables the estimation and assessment of water quality on a broader spatial scale through the creation of distribution maps. The study also highlights the capability of remote sensing to overcome the limitations of in-situ data availability, particularly regarding the infrequent sampling frequency over seven years. Sentinel-2 and Landsat 8, with their short revisit times of 5 and 16 days respectively, offer a solution to this problem.
	Table 3 Comparison between in-situ and satellite-based estimated values
	The study further reveals that the upstream region from Katete to Kamuzu Dam I exhibits the highest concentrations of all water parameters in the reservoir compared to the region between Kamuzu Dam I and Kamuzu Dam II. This region coincides with the high population density and numerous anthropogenic activities, predominantly farming. Consequently, the reservoir acts as a receptor for agricultural effluents washed off by runoff in this area.
	The authors conducted offline processing of downloaded satellite images, which proved time-consuming. However, the availability of historical and current satellite data, along with processing tools offered by the Google Earth Engine (GEE) platform, has simplified and expedited water quality assessments. For a comprehensive understanding of the seasonal variation of water quality parameters and their relationship with anthropogenic activities in the region, future studies could utilize GEE to analyze the evolving water quality of the reservoir.
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